Stoffen die Moeder Natuur tot Kunst heeft verheven

Al miljarden jaren lang heeft Moeder Natuur een fascinerend palet aan biopolymeren gecreëerd, waarvan sommige ware kunstwerken zijn. In deze blog gaan we dieper in op de wereld van biopolymeren en ontdekken we de diversiteit, functies en toepassingen van deze natuurlijke chemische verbindingen. 

 

Lignocellulose: Bouwsteen van de Natuurlijke Wereld

Het ligt voor de hand om te beginnen met het meest voorkomende polymeer op aarde dat ongeveer 50% van de totale biomassa uitmaakt: lignocellulose. Op afbeelding 1, hier rechts te vinden, is een veronderstelde structuur van lignine in naaldbomenhout te zien. Deze stof in bomen en planten, waaronder gras, wordt steeds meer als grondstof ontdekt. In Groningen werd in 2021 de eerste asfaltweg ter wereld in gebruik genomen, waarin bitumen door lignine werd vervangen. Een voorbeeld dat Rijkswaterstaat verder gaat uitbreiden in het ‘Circuroad’ programma.

 

Chitine: Het Opkomende Alternatief voor PFAS

Chitine is de volgende in de lijst van meest voorkomende biopolymeer op aarde. Het is in vrijwel alle insecten, schaaldieren maar ook in schimmels (paddenstoelen) te vinden. Chitosan, verkregen door het verwerken van chitine, wordt momenteel ontwikkeld als alternatief voor perfluorverbindingen, zoals PFAS. Derivaten van chitosan zijn water- en olieafstotend te maken.

 

De diversiteit van biopolymeren komt tot uiting in hun structuur, waarbij zowel homogene als heterogene, lineaire als vertakte configuraties en co-polymerisaties mogelijk zijn. Homogene biopolymeren hebben een uniforme samenstelling en structuur, en alle sub eenheden (monomeren) in het polymeer zijn identiek. Een voorbeeld is desoxyribonucleïnezuur (DNA). Daarentegen hebben heterogene biopolymeren een niet-uniforme samenstelling en structuur, en bestaan uit verschillende soorten monomeren, zoals eiwitten die uit verschillende aminozuren zijn samengesteld. Alhoewel hierop ook weer uitzonderingen zijn, zoals de co-polymeren van gelatine die uit repeterende tripletten van (glycine-X-Y)n bestaan, waarin X en Y meestal proline en hydroxyproline zijn. De afbeelding hieronder toont links DNA met repeterend eenheden van cytidine, desoxyadenosine, desoxyguanosine en thymidine, in het midden collageen als voorbeeld van een gecopolymeriseerd, relatief homogeen eiwit waaruit gelatine kan worden gewonnen en rechts een complex heterogeen eiwit.

 

Bioactieve Biopolymeren: Natuurlijke Kunstenaars van Functionaliteit

De genoemde biopolymeren geven structuur, stevigheid, bescherming (cellulose, chitine) en energie (zetmeel, glycogeen), maar veel biopolymeren vallen op omdat ze bioactief zijn. Functionele activiteit (zoals regulatie, terugkoppeling, activatie van een cascade) lijkt vooralsnog een eigenschap die meestal bij de door de mens ontworpen polymeren ontbreekt. De natuur kan ons daarbij helpen en inspireren en dat gebeurt in toenemende mate. Een fascinerend voorbeeld, althans voor degene met een bio-organische achtergrond, zijn de ketens van N-acetylsiaalzuur. Te eenvoudig gesteld, maar ze bepalen in hoge mate de groei en aanpassingsvermogen van ons brein. Helaas maken enkele neuro invasieve bacteriën die bijvoorbeeld gevreesde hersenvliesontstekingen veroorzaken, hier misbruik van.

Het antistollingseffect van de heparine is een andere type activiteit van een biopolymeer. De stof wordt in de lever aangemaakt. Professor Stan van Boeckel (verbonden aan het toenmalig Organon) en zijn medewerkers wisten met behulp van computertechnieken (eind jaren 80!) de activiteit van heparine terug te brengen tot een molecuul bestaande uit vijf eenheden met enkele essentiële sulfaatgroepen op stereo chemisch belangrijke posities. Dit baanbrekend onderzoek leidde tot sterk verbeterde antistollingstherapie met organisch synthetische heparine imitaties.

 

Eiwitten: Kampioenen van Actieve Biopolymeren

Aan heparine valt op dat biopolymeren ook een lading kunnen hebben. Heparine en derivaten zijn anionen, maar positief geladen biopolymeren komen ook voor, waarbij stikstof in bijvoorbeeld amine- of guanidiniumgroepen in eiwitten, een belangrijke rol speelt. De functionele groepen in biopolymeren zijn dus divers; behalve sulfaat-, amine-en-guanidiniumgroepen, komen ook veel carbonzuren, fosfaat, methyl, acetyl, glycoloyl groepen voor.

Vanwege hun enorme variëteit en functionaliteit, zijn eiwitten de kampioenen onder de actieve biopolymeren. Moeder Natuur maakt dus niet alleen gebruik van monosachariden en fenolen als bouwstenen voor polymeren, ze doet dat ook met aminozuren en lipiden. Zijde is een intrigerend eiwitcomplex en een grote inspiratiebron voor innovatieve, technologische toepassingen in additieven, films, aero- en hydrogelen, schuim voor medische toepassingen, Nano materialen enzovoorts. Zijde bestaat uit twee eiwitten die in verschillende verhoudingen het product hard of zacht maakt. Dat lijkt op klassieke polymeerchemie, maar dan zonder de vervelende weekmakers.

 

Biopolymeren en chemie

We passen biopolymeren soms met een chemische bewerking aan. Voor mij is leer het meest tot de fantasie sprekende voorbeeld. Al in oude tijden, vanaf circa 9.000 jaren geleden, werden huiden tot leer verwerkt. Voor dit proces werden tannines uit onder andere eikenbast (tannum = eikenbast) ingezet. De negatief geladen tannines hechten via ionbindingen, hydrofobe interacties en waterstofbruggen aan eiwitten. Wijndrinkers kennen het effect van het verschijnsel: tannines in de wijn reageren met mondeiwitten en geven wrange smaak aan de wijn. Hoewel eetbaar, laten we eikels waarschijnlijk om die reden voor de eekhoorns liggen. Vanaf het jaar 1800 werden in toenemende mate chroom- en arseenzouten en formaldehyde (uit rook) voor leerbewerking ingezet. Het komt er in deze processen op neer dat de eiwitten in de huid samenklonteren (verknopen) en complexen vormen.

Fascinerend is hoe de natuur totaal verschillende oligomeren en polymeren combineert. Het zijn koolhydraatketens die covalent aan eiwitten (de zogenaamde glycoproteïnen) gebonden zijn, die bijvoorbeeld meebepalen hoe actief en hoe oud het eiwit mag worden. Parasieten en virussen maken er gebruik van om ons immuunsysteem te misleiden. Dr. Aldert Bergwerff, auteur van deze blog, heeft een aanzienlijke bijdrage geleverd aan de opheldering van de polymeren die de parasiet Schistosoma mansoni (getoond op de afbeelding hiernaast) gebruikt om ons immuunsysteem om de tuin te leiden. De parasiet is de veroorzaker van bilharzia en na malaria de meest voorkomende infectie op aarde.

 

Voor veel polymeerchemici zal het vanzelfsprekend zijn dat polymeren niet in een waterig milieu oplossen. Uit deze blog volgt dat veel biopolymeren juist in waterige oplossing voorkomen. Het mag als bekend worden verondersteld dat daar ladingen (ionbindingen), hydrofiele en hydrofobe eigenschappen, Van der Waals krachten, cross-linking (disulfide bruggen) et cetera aan bijdragen. Daarbij helpt een watermantel (kristalwater) dat een biopolymeer omhult waarbij de hydroxylgroepen van monosachariden (denk aan de glycoproteïnen) een grote rol spelen. Monosachariden zijn immers polyalcoholen en trekken water aan. Ook een slimme vouwing waarbij ontvouwing voor activatie van allerlei functies mogelijk is, verhoogt de oplosbaarheid van grote moleculen. De absolute winnaar op dit gebied is dubbelstrengs DNA. Op de afbeelding hieronder zie je DNA-strengen die aan een stukje hout of een glazen staaf blijven kleven. Menselijk DNA is opgelost en heeft een DP van 3 miljard (baseparen), een lengte van 2 meter (6 miljard nucleotiden x 0,34 nm) en een moleculaire massa van 2×1012 Da. Welk (xenobiotisch) polymeer doet dit na?

 

Biopolymeren, de spiegel voor polymeerchemici

Kortom, biopolymeren zijn fascinerend en kunnen een spiegel voor polymeerchemici zijn. Ze zijn divers en bestaan uit een breed spectrum aan structuren en hebben vele eigenschappen. Ze zijn in hoge mate biocompatibel. Ze worden dus makkelijk verdragen door levende organismen. Ze zijn hernieuwbaar door ze te produceren uit lignine, cellulose, zetmeel, chitine, eiwitten, vetten et cetera. Ze hebben een grote verscheidenheid aan makkelijk aanpasbare functionaliteit, zoals flexibiliteit, sterkte, elasticiteit, oplosbaarheid, en thermische en chemische stabiliteit. Niet onbelangrijk, misschien wel de belangrijkste kwaliteit van biopolymeren in de huidige tijd: ze zijn eenvoudig afbreekbaar. Welke chemicus gaat dit met zijn/haar ontworpen polymeren volgen?

 

Deze blog is tot stand gekomen in samenwerking met de Chemische Kring Zwolle en geschreven door dr. Aldert Bergwerff.

 

De Potentie van Biobased Polymeren

op 12 maart 2024 vindt het Kunststof Seminar: Circulaire Transitie plaats in Almelo. Het thema van dit seminar is ‘De Potentie van Biobased Polymeren’.  Interessante sprekers uit de markt nemen je mee om de businesscase kloppend te maken, of vertellen je meer over de techniek en toepassingen van biopolymeren.

Wil jij gaan werken met biopolymeren of werk je er al mee en wil je samen met andere partijen een businesscase opzetten, kom dan zeker op 12 maart naar Almelo. De plaatsen voor het Kunststof Seminar zijn beperkt, dus koop jouw ticket dus snel op deze pagina.

5 vragen over het testen van kunststof

Je wil een product van de beste kwaliteit kunststof. Logisch! Maar ís die kwaliteit ook goed? En hoe weet je dat zo zeker? Het antwoord is simpel: door regelmatig je ‘ingaande’ kunststofstromen te testen! Met de toevoeging van een aantal eenvoudige tests in je productieproces, zet je mooie stappen in het professionaliseren van je kwaliteitssysteem. Hoe, wat en waarom? Dat lees je aan de hand van de volgende vijf vragen.

 

Allereerst: waarom testen?

 

Virgin, recyclaat, regrinds of een combinatie ervan: je kunt je product uit allerlei stromen kunststof produceren. En ja, lang was virgin de standaard. Het voordeel van virgin is namelijk dat het ontzettend voorspelbaar is. Je weet wat de kwaliteit van de output is, net als hoe je (spuitgiet- of extrusie-) machines op het materiaal moet instellen. Natuurlijk is die voorspelbaarheid comfortabel, maar met de druk op onze grondstoffen en opkomende wetgeving (Nationale Circulaire Plastic Norm), groeit de behoefte naar duurzamere alternatieven.

 

Gelukkig zien we dat steeds meer bedrijven de switch maken naar recyclaat en regrinds. Goed nieuws natuurlijk, maar dat vraagt om een scherpere blik aan de voorkant. Recyclaat kan vervuild zijn of is een samenstelling van meerdere stromen, die in elke batch kan verschillen. Dat is geen ramp, maar je wil wél weten of deze batch aan de achterkant aan de producteisen voldoet. En of je je machinepark op deze variatie moet instellen. Dat zie je niet met het blote oog, maar ontdek je alleen door de ingaande kunststofstromen te testen. Zo zorg je ervoor dat:

  1. Jouw product met de juiste kwaliteit van de band rolt.

    Als je weet wat erin gaat, weet je ook beter welke kwaliteit eruit komt. Prima als het materiaal een beetje variatie toont, maar door te testen weet je of je product aan de achterkant voldoet.

  2. Je productieproces betrouwbaar blijft.

    Als je weet wat je proces ingaat, voorkom je eerder fouten. Zo beperk je de scrap-rate. Met (meestal kleine) aanpassingen aan je machines (of aan de batches zelf), blijft je productie optimaal.

Testen is dus een mooie stap om je processen te professionaliseren. Ook als je nog twijfelt over het overstappen naar (deels) recyclaat: testen geeft zekerheid.

 

“Zorg dat je weet wat je in handen hebt, voordat het je machines raakt.”

aldus Peter van Barneveld, Business Developer

 

Wat wil je testen?

Dan wil je weten waar je op gaat testen. En wat moet je in ieder geval testen om zeker te zijn dat de ingaande kunststofstroom van de juiste kwaliteit is? Bij Polymer Science Park kennen we meer dan 20 verschillende testen. Maar volgens ons zijn dit de vier die je sowieso wil doen om een robuust kwaliteitssysteem op te zetten:

  1. FTIR en DSC
    Met FTIR spoor je verschillende polymeren en onzuiverheden in het recyclaat op, op basis van hun unieke infraroodspectra. Met DSC kun je verschillende polymeren in het recyclaat identificeren, door naar het specifieke smeltgedrag te kijken. Met een of beide testen, weet je zeker of en in welke mate je recyclaat zuiver is.
  2. Ver-assing
    Hiermee bepaal je de hoeveelheid anorganische vervuiling zoals glas, metaal en zand. Zo kan door de aanwezigheid van zand je product sneller breken of de verwerkingsmachine slijten.
  3. Melt Flow Index (MFI)
    MFI meet de vloeibaarheid van je materiaal. Soms is het nodig om de machines net even anders in te stellen voor een goedgevuld product.
  4. Treksterkte en impact test
    Hiermee test je mechanische eigenschappen zoals de treksterkte, stijfheid, rekbaarheid, slagvastheid en taaiheid. Als je de eigenschappen van de batch weet, weet je beter of je product voldoet aan de eisen. Is het sterk, stijf of flexibel genoeg?

 

Wanneer testen?

Dat bepaal je zelf, afhankelijk van je type product en hoeveel je produceert. Vaak zien we dat bedrijven alleen de allereerste batch laten testen, om vervolgens jarenlang op volle toeren te produceren. Terwijl de batches variatie kunnen vertonen en dus ook de samenstelling ervan. Door een aantal tests in te bedden in je productieproces, voorkom je verrassingen. Je kunt bijvoorbeeld standaard tests doen:

  • bij elke batch (of meerdere tegelijk). Bijvoorbeeld MFI;
  • als je wisselt van leverancier;
  • op aantal: steekproefsgewijs bij bijvoorbeeld elke 5e of 10e batch;
  • op tijd: steekproefsgewijs elke 3e week van de maand of bij de start van de week.

Natuurlijk hangt dat ook af van hóe je je kwaliteitssysteem inregelt. Daarmee komen we op het volgende punt.

 

Hoe borg je dat in je kwaliteitssysteem?

Er zijn in de basis twee manieren om je eigen systeem op te zetten:

  1. Door zelf machines aan te schaffen.
    Eerlijk is eerlijk: dat is vooral voor grote bedrijven haalbaar. Zij schaffen de machines aan en leiden de mensen op. Daarvoor zijn middelen én de kennis nodig. Daarom ‘lenen’ we onze specialisten regelmatig uit om mee te denken over de opzet en het trainen van de collega’s. Zo kan het bedrijf daarna zelf de batches testen, de effecten op het product meten en de machines afstellen waar nodig.
  2. Door het testen uit te besteden.

Dat hoeft niet ingewikkeld te zijn. Je stuurt een (of een aantal) batches op en binnen korte tijd is duidelijk of deze voldoen aan jouw kwaliteitseisen. Zo zijn wij al onderdeel van de vaste workflow van een groot aantal bedrijven. Het voordeel is dat we, omdat we veel materiaalstromen kennen, de data breder kunnen interpreteren. Zo kunnen we een bredere analyse doen. Blijkt bijvoorbeeld de treksterkte te laag? Dan kunnen we ook helpen een antwoord te vinden.

 

Daarnaast is het van cruciaal belang dat de data wordt verzameld en geanalyseerd, zodat je een trendanalyse kan maken. Zo kun je terugkijken in de tijd in het geval van een kwaliteitsissue en kan je verbanden proberen te leggen.

 

Je eigen kwaliteitssysteem. Wat zijn de voordelen?

Door te testen (of te láten testen) heb je een groot voordeel. Namelijk: dat je je eigen database en trendanalyse opzet  Dat is handig omdat:

 

  • … het je meer keuzemogelijkheden geeft.
    Je weet precies wat jouw product en proces nodig heeft en welke samenstelling een recyclaat mag hebben. Zo kun je breder kijken dan 1 leverancier.
  • … het voor zekerheid zorgt.
    Natuurlijk, je kunt afgaan op de technische specs van de leverancier van het recyclaat. Maar niet elke leverancier meet hetzelfde of werkt met dezelfde toleranties van vervuiling.
  • …het je onafhankelijk maakt.
    Met name als je het uitbesteedt. Jouw testresultaten zijn onafhankelijk ingewonnen. Mocht een klant of leverancier een kwaliteit-gerelateerde vraag hebben, dan is daar geen twijfel over mogelijk.
  • … het je zekerheid geeft, mocht je nog twijfelen over recyclaat.
    Als je overweegt om te schakelen naar duurzamer kunststof, maar je twijfelt over de kwaliteit. Meten is weten, en zo borg je de kwaliteit aan de voorkant.

 

Gedreven testexperts

Het mag duidelijk zijn dat we enthousiast zijn over testen! Want door een eenvoudige toevoeging van tests, kun je een grote slag slaan in de kwaliteit van je producten én processen. Ook – of misschien wel júist – als je werkt met recyclaat!

 

Ook je kwaliteitscontrole (verder) professionaliseren?

We denken graag mee, neem daarvoor vrijblijvend contact op.

Deze reeks van blogs geeft manieren aan om uw productportfolio ‘groener’ te maken. Naast hergebruik (‘re-use’) en gebruik van recyclaat (‘recycling’), kan er bespaard worden op fossiele grondstoffen (‘reduce’) door gebruik te maken van biogebaseerde kunststoffen.

Bioplastics worden vaak geassocieerd met duurzaamheid vanwege hun biologische afbreekbaarheid of afkomst uit hernieuwbare bronnen. Het is hierbij belangrijk om een onderscheid te maken tussen twee belangrijke termen: “biogebaseerd” en “bioafbreekbaar”. Niet alle bioafbreekbare kunststoffen zijn biogebaseerd en niet alle biogebaseerde kunststoffen zijn bioafbreekbaar. De specifieke kansen en uitdagingen van bioafbreekbare kunststoffen worden in een volgende blog uitgebreider besproken.

Hier behandelen we de uitdagingen en kansen die er zijn om biogebaseerde kunststoffen voor uw portfolio in te zetten.

 

Vaarwel fossiel, hallo bio!

Biogebaseerde kunststoffen worden geproduceerd uit hernieuwbare bronnen, zoals biomassa, zetmeel en suiker, of door middel van micro-organismen. Deze bronnen kunnen CO2 uit de atmosfeer vastleggen. Op productniveau betekent dit meestal een kleinere CO2-voetafdruk in vergelijking tot de winning en verwerking van fossiele brandstoffen voor de productie van traditionele plastics als een Life Cycle Assessment (LCA) vereist is.

European Bioplastics verwacht dat de wereldwijde productie van bioplastics bijna zal verdrievoudigen van circa 2,2 Mton in 2022 tot ongeveer 6,3 Mton in 2027. Daarvan is op dit moment ruim de helft biologisch afbreekbaar en zal naar verwachting stijgen tot meer dan 3,5 Mton in 2027. Het aandeel biogebaseerde, niet-biodegradeerbare producten zal ruim verdubbelen tot meer dan 2,7 Mton. De relatieve verdeling van de diverse kunststoffen is hieronder weergegeven.

 

Bron: European Bioplastics

 

Ja ik wil biobased inzetten, hoe nu verder?

Biogebaseerde kunststoffen kunnen een duurzaam alternatief bieden voor traditionele plastics en hun marktaandeel zal de komende jaren met een factor 3 groeien. Hoe verhouden deze zich tot fossiel op het gebied van beschikbaarheid, wetgeving, materiaaleigenschappen en recycling?

 

Beschikbaarheid

De beschikbaarheid van voldoende hernieuwbare biomassa op grote schaal is een belangrijke factor voor de productie van biogebaseerde plastics. Efficiënt gebruik van beschikbare grondstoffen, zoals organische reststromen afkomstig uit sectoren zoals landbouw en waterzuivering, voorkomt concurrentie met de voedselketen. Daarnaast zijn ook hernieuwbare brandstoffen potentiële concurrenten voor deze grondstoffen.

Opschaling van proeffabriek naar commerciële productie geeft voor veel van de biopolymeren aanzienlijke uitdagingen. Daarom zijn er wereldwijd slechts enkele fabrikanten die bioplastics op de markt brengen. Sommige biogebaseerde plastics, zoals PLA (polymelkzuren) en bio-PE uit maïszetmeel of suikerriet, zijn momenteel redelijk goed beschikbaar in Nederland. Daarentegen zijn andere bioplastics, zoals PHA (polyhydroxyalkanoaten), PEF (polyethylene furanoaten) en bio-PP uit suikers en plantaardige oliën, nog maar beperkt commercieel beschikbaar en nog volop in ontwikkeling. Het is daarom aan te bevelen om te kijken naar de uitwisselbaarheid van het huidige polymeer dat gebruikt wordt, met een goed beschikbare bio-alternatief.

 

Wetgeving

Met alleen recycling en hergebruik lukt het niet om de kunststofmarkt klimaatneutraal te krijgen in 2050 en fossiele grondstoffen te vervangen. Vooruitlopend op EU-wetgeving heeft het kabinet eind april 2023 besloten per 2027 een nationale verplichting voor plasticproducenten in te voeren om de toepassing van gerecycled plastic of biogebaseerd plastic te stimuleren. Het voornemen is om de verplichting te laten oplopen naar 25%-30% plastic recyclaat of biogebaseerd plastic in 2030. Op dit moment is het aandeel biobased op de Europese markt ongeveer 1%.

Het gehalte biogebaseerd in een kunststof kan worden gemeten volgens de Europese normen EN16640 en EN16785. Dit kan worden gecertificeerd, bijvoorbeeld via TÜV (het OK biobased certificaat) en NEN (biobased content).

 

Bron: NEN Normen voor biobased producten.

 

Materiaaleigenschappen

Hoewel bio-PE en bio-PP identieke materiaaleigenschappen hebben als hun fossiele tegenhangers, hebben andere biogebaseerde plastics specifieke materiaaleigenschappen die van invloed zijn op hun toepassingsmogelijkheden. PLA, bijvoorbeeld, heeft goede stijfheid en thermische stabiliteit, maar kan bros zijn en gevoelig zijn voor vocht. PEF biedt uitstekende barrière-eigenschappen, terwijl PHA verschillende eigenschappen kan hebben, afhankelijk van het type en de productiemethode. Het begrijpen en beheersen van deze materiaaleigenschappen is essentieel om ervoor te zorgen dat biogebaseerde plastics geschikt zijn voor de beoogde toepassingen en voldoen aan de vereiste specificaties.

 

Recycling

In tegenstelling tot bijvoorbeeld bio-PE en bio-PET, kunnen bioafbreekbare kunststoffen als PLA en PHA niet altijd goed met bestaande recyclingstromen van traditionele plastics gemengd worden. Dat komt door de andere materiaaleigenschappen en omdat deze plastics ook bioafbreekbaar zijn. Deze incompatibiliteit kan de recycling van de totale plasticstroom verstoren. Volgens Milieu Centraal dient bioafbreekbaar plastic daarom bij het restafval te worden weggegooid met een tarief Afvalbeheerbijdrage Verpakkingen van € 1,05/kg in 2023.

Bovendien is het, door het kleine marktaandeel, op dit moment nog niet rendabel om biogebaseerde kunststoffen te scheiden en sorteren van andere plastics in het afval. CE Delft schat dat PLA, met een huidige marktaandeel van 0,1-0,5%, pas bij een aandeel van 10% in de verpakkingsmarkt voor sorteerders en recyclers economisch aantrekkelijk is te recyclen.

 

Van uitdagingen naar innovatie

Ondanks deze uitdagingen blijven biogebaseerde kunststoffen ontwikkelen en groeien als een duurzaam alternatief. Het is belangrijk voor producenten, gebruikers en beleidsmakers om samen te werken aan het stimuleren van de beschikbaarheid van biomassa, het ontwikkelen van passende wet- en regelgeving en het bevorderen van onderzoek en ontwikkeling om de eigenschappen en prestaties van biobased plastics verder te verbeteren. Op deze manier kunnen we  samen de transitie naar een duurzamere en circulaire economie versnellen.

 

Wilt u werken met biogebaseerde kunststoffen om te komen tot een duurzamere en circulaire economie?  Maar loopt u daarin tegen één van de genoemde of andere uitdagingen aan? Wij pakken de uitdagingen graag samen met u op! Onze  materiaal- en verwerkingsdeskundigen van Polymer Science park helpen u verder met kennis, test- en prototypefaciliteiten en een prachtig netwerk.  Neem daarvoor vrijblijvend contact op.

Martijn Oversteegen, 19 juni 2023

In onze vorige blog gaven wij u 3 manieren om te starten met een ‘groener’ plastic product portfolio, namelijk:

1) Gebruik maken van gerecycled plastic – oftewel recyclaat

2) Gebruik maken van biogebaseerde kunststoffen

3) Gebruik maken van bioafbreekbare kunststoffen

Voor deze onderwerpen geldt dat er uitdagingen en kansen liggen. In deze blog vertellen wij u meer over het gebruik van gerecyclede plastics.

 

Goodbye virgin, hello recyclaat!

Er zijn een aantal redenen waarom bedrijven gerecycled plastic willen gebruiken. De belangrijkste zijn milieuwinst en prijs. Gerecycled kunststof kost minder energie om geproduceerd te worden en door ze her te gebruiken, voorkomen we dat ze in het milieu terecht komen. Dit bespaart CO₂ en extra kosten! De kosten van recyclaat zijn momenteel lager dan die van nieuw (virgin) materiaal.

Daarnaast zien we dat consumenten, bedrijven en (semi) overheden steeds vaker duurzaamheid meewegen in hun aankoop. Onderscheidend vermogen door middel van inzet van recyclaat is dus gewoon onderdeel van het businessmodel vandaag; survival of the fittest!

Als laatste spelen overheid ambities en voortvloeiende regelgeving ook een rol. We hebben in Nederland afgesproken dat in 2030, 50% van de grondstoffen circulair moet zijn. Om hieraan te voldoen, kan de overstap naar gerecycled kunststof een belangrijke stap zijn. We zien nu al in Frankrijk dat het verplicht is om 20% circulaire content te hebben in alle overheidsaanbestedingen.

Dat recyclaat als alternatief voor virgin plastic kan worden ingezet, is in een breed scala aan producten al aangetoond. Denk hierbij aan verfemmers, zeepflessen, maar ook producten in de bouw zoals profielen, buizen en kappen.

Kortom; de weg ligt behoorlijk open met kansen om gerecycled plastic in te zetten. Toch zijn er een aantal overwegingen en voorbereidingen nodig.

 

Ja ik wil recyclaat inzetten, hoe nu verder?

De uitdagingen in het gebruik van recyclaat zijn te categoriseren in 3 onderwerpen.

  • Beschikbaarheid
  • Wetgeving
  • Materiaaleigenschappen

 

 

Beschikbaarheid

Stabiliteit in kwaliteit en beschikbaarheid van het juiste materiaal is belangrijk voor een stabiel proces en eindproduct. De beschikbaarheid van kunststof hangt samen met de inzameling en sortering van het plastic. Er kan worden gesorteerd op type kunststof, product en/of kleur. Hoe beter het materiaal gesorteerd wordt, hoe beter de eigenschappen zijn.   Dit proces is zowel kostbaar als technisch uitdagend. Neem bijvoorbeeld een handvat van een boormachine, deze bestaat uit twee types kunststof die aan elkaar vast zitten. Design-For-Recycling (denk aan modulariteit en ontwerp van monomateriaal) hangt daarom zeer sterk samen met de kwaliteit en beschikbaarheid van het recyclaat.

 

Wetgeving

De huidige wetgeving stimuleert het gebruik van gerecycled plastic. Normen worden langzaam maar zeker herschreven om gebruik van recyclaat niet te verhinderen. Toch zijn er een aantal kunststof toepassingen waarbij dit lastig ligt. De voedselwetgeving schrijft voort dat er in voedseltoepassingen buiten PET nog geen gerecycled kunststof mogen worden toegepast. Dit komt doordat contaminaties de voedselveiligheid niet gegarandeerd kan worden. Een verdieping van wat mag in uw segment wordt sterk aanbevolen.

 

Materiaaleigenschappen

Materiaaleigenschappen worden bepaald door recyclaat goed te sorteren (puurheid), wassen (verwijderen vervuiling, contaminaties, geur) en upgraden waar nodig. De materiaaleigenschappen van recyclaat zijn anders dan virgin kunststoffen. Belangrijk is om de relevante eigenschappen te weten van de virgin kunststof en een benchmark uit te voeren met het gerecyclede equivalent. Daarnaast kunnen de eigenschappen worden verbeterd door het gebruik van additieven tijdens de compounding stap of een verbeterde sortering.

 

Van uitdagingen naar innovatie

De Kunststof branche is zich goed bewust van bovenstaande mogelijkheden en uitdagingen. Bij de ontwikkeling van nieuwe producten wordt rekening gehouden met het gebruik van recyclaat, al dan niet van eigen retour stromen of vanuit ingezameld afval. In geval van retourstroom pilots wordt er veel geleerd over hoe producten terugkomen en weer worden ingezet als waardevolle grondstoffen Deze recyclaat stromen worden vaak opgewaardeerd om aan producteigenschappen te voldoen.

Wat opvalt is dat in alle kunststof segmenten vooral grote stappen wordt gezet door de ‘leaders of the industry’. Zij omarmen het nieuwe businessmodel dat rekening houdt met zowel een lage footprint, volledige recycleerbaarheid en prachtige product performances. Zie bijvoorbeeld het ELYSIUM matras van Auping wat bestaat uit een (mono) type kunststof en via retour systemen aan het einde van zijn levensduur weer terugkomt.

 

Bent u de volgende ‘leader of the industry’ en heeft u ambities om van start te gaan met recyclaat in uw product? Loopt u daarin tegen één van deze of andere uitdagingen aan? Wij pakken de uitdagingen graag met u aan. Onze materiaal- en verwerkingsdeskundigen van Polymer Science park helpen u verder met kennis, test- en prototype faciliteiten en een prachtig netwerk.  Neem daarvoor vrijblijvend contact op.

Martine Bonnema, 16 mei 2023

Heb je een uniek idee, merk of product waarmee je het verschil wil maken? Door het goed te beschermen met intellectuele-eigendomsrechten, voeg je er extra waarde aan toe.

Om dat inzichtelijk te maken, hebben we verschillende aspecten van intellectueel eigendom op een rij gezet, te beginnen met de vraag: Wat is intellectueel eigendom?

 

Wat is intellectueel eigendom?

Intellectueel eigendom is de verzamelnaam voor rechten die uitgewerkte ideeën beschermen. Een concept op zichzelf kun je namelijk niet beschermen. Door het vestigen van intellectuele-eigendomsrechten zorg je enerzijds voor je eigen ‘freedom to operate’ ten aanzien van het gebruik van jouw uitgewerkte idee. Anderzijds geeft het je een middel in handen om derden op afstand te houden en zelf de vruchten van jouw idee te plukken.

Het intellectuele eigendomsrecht kent verschillende disciplines. Denk o.a. aan octrooien (patenten), merken en modellen (designs). Hieronder hebben we deze in vogelvlucht op een rij gezet.

 

Octrooien

Het ontwikkelen of verbeteren van een machine, samenstelling, product, methode of proces kost inspanning. Deze inspanning kan uitgedrukt worden in tijd en geld. Het is daarom van belang om je idee goed te beschermen, om zo de vruchten te plukken van je inspanningen. Een octrooi (patent) aanvragen biedt dé oplossing.

 

Een uitvinding waarvoor een octrooi wordt aangevraagd, kan uitblinken in eenvoud en hoeft niet per se ingewikkeld te zijn. Het kan gaan om (verbeteringen van) een machine, product, productieproces of werkwijze, maar ook om een nieuwe toepassing van een al bestaand product.

 

Een octrooi biedt meer dan alleen bescherming. Het biedt je ook het exclusieve recht op je uitvinding. Jij mag anderen op basis daarvan verbieden om de uitvinding te produceren, exploiteren en verhandelen in het land waar je octrooi hebt. Hiermee bepaal je dus zelf of iemand anders jouw idee – tegen betaling – mag toepassen. Een octrooi geeft je uitvinding op deze manier dus ook direct economische waarde.

 

Heb je al een Europees octrooi of Europese octrooiaanvraag? Klik dan op deze link om meer te weten te komen over de aankomende veranderingen binnen het Europese octrooi systeem door het van kracht worden van het unitair octrooi.

 

Merken

Merken zijn er in allerlei soorten en maten. Zo kan een merk bijvoorbeeld bestaan uit een naam (woordmerk), een beeld of logo (beeldmerk), gecombineerde woord- en beeldmerken, kleurcombinaties, afkortingen, cijfercombinaties, slagzinnen, en vormen van een product of verpakking. Al deze elementen kunnen op zichzelf of in samenspel met elkaar het unieke “gezicht” van een bedrijf, organisatie, product of dienst vormen.

 

Een sterk merk is goud waard en het is dan ook belangrijk om het goed te beschermen. Een merk in de markt zetten vraagt aanzienlijke investeringen in productie, reclame en marketing. Met merkbescherming voorkom je dat derden gratis meeliften op het succes waar je de nodige tijd, geld en energie in hebt geïnvesteerd. Het zorgt ervoor dat jouw merk uniek blijft, en dat het een waardevolle, onderscheidende kracht heeft én houdt tegenover andere merken.

 

Modellen

Tegenwoordig is de vormgeving van een product vaak minstens even belangrijk als de gebruiksfunctie ervan. Een originele en pakkende vormgeving draagt immers bij aan de positieve beeldvorming. Het is daarom van groot belang het uiterlijk van het product, oftewel het model, te beschermen. Met professionele modelbescherming krijg je als ontwerper of rechthebbende een exclusief recht op die vormgeving. Veel iconische ontwerpen zijn dan ook beschermd door middel van modelbescherming.

 

Hoe verkrijg je een intellectueel eigendomsrecht?

Om een intellectueel eigendomsrecht te verkrijgen moet in de meeste gevallen een aanvraag worden ingediend. Hierin wordt het te beschermen idee, vaak met een concreet voorbeeld, beschreven. Na indiening (en soms toetsing) wordt het recht verleend en kun je daarmee aan de slag.

 

Verdient jouw idee ook bescherming? Neem vrijblijvend contact met ons op om de mogelijkheden te bespreken. We hebben een scala aan specialisten en kunnen daardoor op elk onderwerp binnen het intellectueel eigendom meedenken.

 

Tot slot nog een paar praktische tips van Arnold & Siedsma

  • Wacht niet te lang. In de regel geldt dat het idee moet zijn vastgelegd voor je het openbaar maakt. Anders is geldige bescherming niet meer mogelijk;
  • Denk niet te snel dat iets geen uitvinding is – uitvinden is niet per se “rocket science”;
  • Wees alert! Als iemand inbreuk maakt op jouw rechten, onderneem meteen actie.

 

Kom je er niet uit? Vraag een specialist van Arnold & Siedsma om advies. Zij ondersteunen je graag om jouw idee te beschermen.

 

Laurens Brocken (octrooien)

Elka Stegeman (merken & modellen)

Plastic producten hebben vaak een negatief imago, terwijl deze markt de afgelopen decennia sterk is gegroeid. Het probleem waar veel productmanagers, ontwerpers en R&D-managers mee te maken hebben, is waar ze moeten beginnen met het “vergroenen” van hun portfolio dat nog steeds op fossiele brandstoffen is gebaseerd. In deze blog geven we 3 opties die u op weg helpen.

 

Plastic: the best and the worst

Er wordt vaak gezegd dat plastics de drijvende kracht zijn achter de circulaire en koolstofarme economie die Europa voor ogen heeft. De unieke eigenschappen van plastics zorgen voor unieke functionaliteiten: lange levensduur, niet-corrosief, eindeloos recyclebaar en licht van gewicht. Maar dat heeft een prijs; het grootste deel van de polymeren is nog steeds gebaseerd op fossiele brandstoffen en de hoeveelheid polymeren die daadwerkelijk wordt gerecycled, is nog steeds beperkt. Bovendien belanden plastics vaak op de vuilnisbelt en bedreigen microplastics onze wateren. Dus de vraag rijst, wat kunnen we doen om deze producten toekomstbestendig te maken? 

 

Reduce, Re-use and Recycle; waar en hoe te beginnen?

Waarschijnlijk bent u al begonnen met een of meer van de onderstaande R’s om de impact van uw producten te verminderen: 

  • Verminderen: Verminder het gewicht en/of schakel over op niet-fossiele of niet-virgin grondstoffen. Verleng de levensduur van het product zodat minder herhaalaankopen nodig zijn. 
  • Hergebruiken: Verbeter de repareerbaarheid en voeg modulaire componenten toe.
  • Recycling: Herwin waardevolle materialen om nieuwe producten te produceren.

De 3 R’s zijn enigszins abstract en niet voldoende richtinggevend voor ontwerpers, productontwikkelaars, marketeers en R&D-ingenieurs om een productwijziging te starten. In de samenvatting hieronder geven we u 3 mogelijke richtingen om te beginnen: 

 

 

 

1. Gebruik van recyclaat

Vandaag de dag is er een groeiende voorraad recyclaat die wordt gegenereerd uit industrieel en consumentenafval. Recyclaat wordt gewassen, gesorteerd (op kleur/kwaliteit) en opnieuw gesmolten tot granulaat. Grote fracties (in verschillende kwaliteiten) die beschikbaar zijn als recyclaat zijn PP, PET en PE (HDPE/LDPE). Hieronder enkele overwegingen om rekening mee te houden bij de inzet van recyclaat:

  • Beschikbaarheid en prijs: stabiliteit van aanbod en prijs geeft inzicht in hoeveel recyclaat je kunt gebruiken.
  • Fysieke eigenschappen: het is essentieel om de fysieke eigenschappen van beschikbare materialen te controleren en deze af te stemmen op de vereisten van je product. 

 

2. Gebruik van biogebaseerde kunststoffen

Op dit moment is het niet mogelijk om elk type product volledig te produceren met recyclaat als grondstof, vanwege verschillende redenen (zoals voorschriften voor voedselkwaliteit, fysische eigenschappen en beschikbaarheid). In het geval dat je toch een start wilt maken met het verminderen van het gebruik van fossiele brandstoffen en CO2-uitstoot, zijn bBiobased materialen een interessant alternatief. De belangrijkste factor om rekening mee te houden is beschikbaarheid en prijs, vanwege de relatief lage volwassenheid van deze technologie. Daarnaast is het belangrijk om de verwerkings- en fysieke eigenschappen te kennen, omdat sommige biobased kunststoffen directe alternatieven zijn (zoals Bio-PE), maar sommige materialen een compleet verschillende set eigenschappen hebben (zoals PHA, PEF). 

 

3. Gebruik van biologisch afbreekbare kunststoffen

Biologisch afbreekbare kunststoffen zijn een interessante oplossing voor kunststofproducten waarbij (onbedoelde) vrijlating in het milieu waarschijnlijk is. Voorbeelden hiervan zijn verpakkingen en draagbare textielproducten in de vorm van microplastics. Het overschakelen naar biologisch afbreekbare materialen kan afvalvermindering, microplastics en milieuvrijlating verminderen. 

Een belangrijk punt is om te controleren of de geteste afbraakconditie overeenkomt met de omgeving waarin het product waarschijnlijk wordt vrijgegeven (zoals industriële compostering, thuiscompostering, natuurlijke bodem). Tot slot zijn biologisch afbreekbare kunststoffen minder geschikt voor producten die kunnen worden gerecycled via een gecoördineerd end-of-life systeem, zoals via een systeem voor uitgebreide productverantwoordelijkheid (UPV). Waardevolle kunststoffen moeten in de kringloop worden gehouden in plaats van weg te lekken.

 

Maak een start in 2023!

Wilt u een start maken met het gebruik van recyclaat, biobased of biologisch afbreekbare kunststoffen, dan kan Polymer Science Park u helpen met een van onze materiaal- en verwerkingsdeskundigen. PSP is een open innovatiecentrum dat is gespecialiseerd in onderzoek en ontwikkeling van toekomstbestendige polymeren. Neem contact met ons op voor meer informatie.

 

Peter van Barneveld, 15 maart 2023

Heb je een vraag?

Bel ons op 085 483 7800 of maak gebruik van het onderstaande contactformulier.