Stoffen die Moeder Natuur tot Kunst heeft verheven

Al miljarden jaren lang heeft Moeder Natuur een fascinerend palet aan biopolymeren gecreëerd, waarvan sommige ware kunstwerken zijn. In deze blog gaan we dieper in op de wereld van biopolymeren en ontdekken we de diversiteit, functies en toepassingen van deze natuurlijke chemische verbindingen. 

 

Lignocellulose: Bouwsteen van de Natuurlijke Wereld

Het ligt voor de hand om te beginnen met het meest voorkomende polymeer op aarde dat ongeveer 50% van de totale biomassa uitmaakt: lignocellulose. Op afbeelding 1, hier rechts te vinden, is een veronderstelde structuur van lignine in naaldbomenhout te zien. Deze stof in bomen en planten, waaronder gras, wordt steeds meer als grondstof ontdekt. In Groningen werd in 2021 de eerste asfaltweg ter wereld in gebruik genomen, waarin bitumen door lignine werd vervangen. Een voorbeeld dat Rijkswaterstaat verder gaat uitbreiden in het ‘Circuroad’ programma.

 

Chitine: Het Opkomende Alternatief voor PFAS

Chitine is de volgende in de lijst van meest voorkomende biopolymeer op aarde. Het is in vrijwel alle insecten, schaaldieren maar ook in schimmels (paddenstoelen) te vinden. Chitosan, verkregen door het verwerken van chitine, wordt momenteel ontwikkeld als alternatief voor perfluorverbindingen, zoals PFAS. Derivaten van chitosan zijn water- en olieafstotend te maken.

 

De diversiteit van biopolymeren komt tot uiting in hun structuur, waarbij zowel homogene als heterogene, lineaire als vertakte configuraties en co-polymerisaties mogelijk zijn. Homogene biopolymeren hebben een uniforme samenstelling en structuur, en alle sub eenheden (monomeren) in het polymeer zijn identiek. Een voorbeeld is desoxyribonucleïnezuur (DNA). Daarentegen hebben heterogene biopolymeren een niet-uniforme samenstelling en structuur, en bestaan uit verschillende soorten monomeren, zoals eiwitten die uit verschillende aminozuren zijn samengesteld. Alhoewel hierop ook weer uitzonderingen zijn, zoals de co-polymeren van gelatine die uit repeterende tripletten van (glycine-X-Y)n bestaan, waarin X en Y meestal proline en hydroxyproline zijn. De afbeelding hieronder toont links DNA met repeterend eenheden van cytidine, desoxyadenosine, desoxyguanosine en thymidine, in het midden collageen als voorbeeld van een gecopolymeriseerd, relatief homogeen eiwit waaruit gelatine kan worden gewonnen en rechts een complex heterogeen eiwit.

 

Bioactieve Biopolymeren: Natuurlijke Kunstenaars van Functionaliteit

De genoemde biopolymeren geven structuur, stevigheid, bescherming (cellulose, chitine) en energie (zetmeel, glycogeen), maar veel biopolymeren vallen op omdat ze bioactief zijn. Functionele activiteit (zoals regulatie, terugkoppeling, activatie van een cascade) lijkt vooralsnog een eigenschap die meestal bij de door de mens ontworpen polymeren ontbreekt. De natuur kan ons daarbij helpen en inspireren en dat gebeurt in toenemende mate. Een fascinerend voorbeeld, althans voor degene met een bio-organische achtergrond, zijn de ketens van N-acetylsiaalzuur. Te eenvoudig gesteld, maar ze bepalen in hoge mate de groei en aanpassingsvermogen van ons brein. Helaas maken enkele neuro invasieve bacteriën die bijvoorbeeld gevreesde hersenvliesontstekingen veroorzaken, hier misbruik van.

Het antistollingseffect van de heparine is een andere type activiteit van een biopolymeer. De stof wordt in de lever aangemaakt. Professor Stan van Boeckel (verbonden aan het toenmalig Organon) en zijn medewerkers wisten met behulp van computertechnieken (eind jaren 80!) de activiteit van heparine terug te brengen tot een molecuul bestaande uit vijf eenheden met enkele essentiële sulfaatgroepen op stereo chemisch belangrijke posities. Dit baanbrekend onderzoek leidde tot sterk verbeterde antistollingstherapie met organisch synthetische heparine imitaties.

 

Eiwitten: Kampioenen van Actieve Biopolymeren

Aan heparine valt op dat biopolymeren ook een lading kunnen hebben. Heparine en derivaten zijn anionen, maar positief geladen biopolymeren komen ook voor, waarbij stikstof in bijvoorbeeld amine- of guanidiniumgroepen in eiwitten, een belangrijke rol speelt. De functionele groepen in biopolymeren zijn dus divers; behalve sulfaat-, amine-en-guanidiniumgroepen, komen ook veel carbonzuren, fosfaat, methyl, acetyl, glycoloyl groepen voor.

Vanwege hun enorme variëteit en functionaliteit, zijn eiwitten de kampioenen onder de actieve biopolymeren. Moeder Natuur maakt dus niet alleen gebruik van monosachariden en fenolen als bouwstenen voor polymeren, ze doet dat ook met aminozuren en lipiden. Zijde is een intrigerend eiwitcomplex en een grote inspiratiebron voor innovatieve, technologische toepassingen in additieven, films, aero- en hydrogelen, schuim voor medische toepassingen, Nano materialen enzovoorts. Zijde bestaat uit twee eiwitten die in verschillende verhoudingen het product hard of zacht maakt. Dat lijkt op klassieke polymeerchemie, maar dan zonder de vervelende weekmakers.

 

Biopolymeren en chemie

We passen biopolymeren soms met een chemische bewerking aan. Voor mij is leer het meest tot de fantasie sprekende voorbeeld. Al in oude tijden, vanaf circa 9.000 jaren geleden, werden huiden tot leer verwerkt. Voor dit proces werden tannines uit onder andere eikenbast (tannum = eikenbast) ingezet. De negatief geladen tannines hechten via ionbindingen, hydrofobe interacties en waterstofbruggen aan eiwitten. Wijndrinkers kennen het effect van het verschijnsel: tannines in de wijn reageren met mondeiwitten en geven wrange smaak aan de wijn. Hoewel eetbaar, laten we eikels waarschijnlijk om die reden voor de eekhoorns liggen. Vanaf het jaar 1800 werden in toenemende mate chroom- en arseenzouten en formaldehyde (uit rook) voor leerbewerking ingezet. Het komt er in deze processen op neer dat de eiwitten in de huid samenklonteren (verknopen) en complexen vormen.

Fascinerend is hoe de natuur totaal verschillende oligomeren en polymeren combineert. Het zijn koolhydraatketens die covalent aan eiwitten (de zogenaamde glycoproteïnen) gebonden zijn, die bijvoorbeeld meebepalen hoe actief en hoe oud het eiwit mag worden. Parasieten en virussen maken er gebruik van om ons immuunsysteem te misleiden. Dr. Aldert Bergwerff, auteur van deze blog, heeft een aanzienlijke bijdrage geleverd aan de opheldering van de polymeren die de parasiet Schistosoma mansoni (getoond op de afbeelding hiernaast) gebruikt om ons immuunsysteem om de tuin te leiden. De parasiet is de veroorzaker van bilharzia en na malaria de meest voorkomende infectie op aarde.

 

Voor veel polymeerchemici zal het vanzelfsprekend zijn dat polymeren niet in een waterig milieu oplossen. Uit deze blog volgt dat veel biopolymeren juist in waterige oplossing voorkomen. Het mag als bekend worden verondersteld dat daar ladingen (ionbindingen), hydrofiele en hydrofobe eigenschappen, Van der Waals krachten, cross-linking (disulfide bruggen) et cetera aan bijdragen. Daarbij helpt een watermantel (kristalwater) dat een biopolymeer omhult waarbij de hydroxylgroepen van monosachariden (denk aan de glycoproteïnen) een grote rol spelen. Monosachariden zijn immers polyalcoholen en trekken water aan. Ook een slimme vouwing waarbij ontvouwing voor activatie van allerlei functies mogelijk is, verhoogt de oplosbaarheid van grote moleculen. De absolute winnaar op dit gebied is dubbelstrengs DNA. Op de afbeelding hieronder zie je DNA-strengen die aan een stukje hout of een glazen staaf blijven kleven. Menselijk DNA is opgelost en heeft een DP van 3 miljard (baseparen), een lengte van 2 meter (6 miljard nucleotiden x 0,34 nm) en een moleculaire massa van 2×1012 Da. Welk (xenobiotisch) polymeer doet dit na?

 

Biopolymeren, de spiegel voor polymeerchemici

Kortom, biopolymeren zijn fascinerend en kunnen een spiegel voor polymeerchemici zijn. Ze zijn divers en bestaan uit een breed spectrum aan structuren en hebben vele eigenschappen. Ze zijn in hoge mate biocompatibel. Ze worden dus makkelijk verdragen door levende organismen. Ze zijn hernieuwbaar door ze te produceren uit lignine, cellulose, zetmeel, chitine, eiwitten, vetten et cetera. Ze hebben een grote verscheidenheid aan makkelijk aanpasbare functionaliteit, zoals flexibiliteit, sterkte, elasticiteit, oplosbaarheid, en thermische en chemische stabiliteit. Niet onbelangrijk, misschien wel de belangrijkste kwaliteit van biopolymeren in de huidige tijd: ze zijn eenvoudig afbreekbaar. Welke chemicus gaat dit met zijn/haar ontworpen polymeren volgen?

 

Deze blog is tot stand gekomen in samenwerking met de Chemische Kring Zwolle en geschreven door dr. Aldert Bergwerff.

 

De Potentie van Biobased Polymeren

op 12 maart 2024 vindt het Kunststof Seminar: Circulaire Transitie plaats in Almelo. Het thema van dit seminar is ‘De Potentie van Biobased Polymeren’.  Interessante sprekers uit de markt nemen je mee om de businesscase kloppend te maken, of vertellen je meer over de techniek en toepassingen van biopolymeren.

Wil jij gaan werken met biopolymeren of werk je er al mee en wil je samen met andere partijen een businesscase opzetten, kom dan zeker op 12 maart naar Almelo. De plaatsen voor het Kunststof Seminar zijn beperkt, dus koop jouw ticket dus snel op deze pagina.

Hij staat bekend als meteoroloog, maar heeft zich volledig gestort op duurzaam en Biobased bouwen. Gerrit Hiemstra zorgt voor een inspirerende opening van het Kunststof Seminar | De Potentie van Biobased Kunststoffen op 12 maart in Almelo. Als mede-oprichter van Oarshûs streeft hij ernaar om de bouwsector te transformeren. Het moet Oars, oftewel anders. Anders ontwerpen, anders organiseren, anders bouwen. Dat doet Oarshûs onder andere door gebruik te maken van Biobased materialen. Gerrit neemt jou tijdens het seminar mee in deze visie en passie. Laat je inspireren en kom op 12 maart naar Almelo.

Wat kun je nog meer verwachten?

Na de mooie opening van Gerrit Hiemstra, verzorgd projectleider Erwin Zant een korte introductie over biopolymeren. Biopolymeren, het is een mooie oplossing om jouw product duurzamer te maken. Maar hoe doe je dat dan en waar begin je? Tijdens dit Kunststof Seminar hopen onze sprekers jou verder te helpen met die vragen. Als iedereen heeft genoten van een kop koffie, starten we met twee deelsessies.

 

Deelsessie Biopolymeren, de Businesscase

De capaciteit, prijzen en benodigde wetgeving en infrastructuur om tot een significante kunststofstroom te groeien. In deze deelsessie nemen interessante sprekers uit de markt je mee om de businesscase kloppend te maken.

 

Deelsessie Biopolymeren, de Techniek en Toepassingen

Welke functionele eigenschappen hebben biopolymeren ten opzichte van conventionele kunststoffen en wat kan je verwachten in het verwerkingsproces. In deze deelsessie gaan sprekers uit de kunststofindustrie daar op in.

 

Ga samenwerkingen aan en verbreed jouw netwerk

Het seminar sluiten we na het mooie inhoudelijke programma af met een netwerkborrel. Ontmoet gelijkgestemde uit de industrie om mogelijke samenwerkingen aan te gaan.

 

Tickets

Heb je jouw ticket al bemachtigd? Ga voor meer informatie en tickets naar deze link.

5 vragen over het testen van kunststof

Je wil een product van de beste kwaliteit kunststof. Logisch! Maar ís die kwaliteit ook goed? En hoe weet je dat zo zeker? Het antwoord is simpel: door regelmatig je ‘ingaande’ kunststofstromen te testen! Met de toevoeging van een aantal eenvoudige tests in je productieproces, zet je mooie stappen in het professionaliseren van je kwaliteitssysteem. Hoe, wat en waarom? Dat lees je aan de hand van de volgende vijf vragen.

 

Allereerst: waarom testen?

 

Virgin, recyclaat, regrinds of een combinatie ervan: je kunt je product uit allerlei stromen kunststof produceren. En ja, lang was virgin de standaard. Het voordeel van virgin is namelijk dat het ontzettend voorspelbaar is. Je weet wat de kwaliteit van de output is, net als hoe je (spuitgiet- of extrusie-) machines op het materiaal moet instellen. Natuurlijk is die voorspelbaarheid comfortabel, maar met de druk op onze grondstoffen en opkomende wetgeving (Nationale Circulaire Plastic Norm), groeit de behoefte naar duurzamere alternatieven.

 

Gelukkig zien we dat steeds meer bedrijven de switch maken naar recyclaat en regrinds. Goed nieuws natuurlijk, maar dat vraagt om een scherpere blik aan de voorkant. Recyclaat kan vervuild zijn of is een samenstelling van meerdere stromen, die in elke batch kan verschillen. Dat is geen ramp, maar je wil wél weten of deze batch aan de achterkant aan de producteisen voldoet. En of je je machinepark op deze variatie moet instellen. Dat zie je niet met het blote oog, maar ontdek je alleen door de ingaande kunststofstromen te testen. Zo zorg je ervoor dat:

  1. Jouw product met de juiste kwaliteit van de band rolt.

    Als je weet wat erin gaat, weet je ook beter welke kwaliteit eruit komt. Prima als het materiaal een beetje variatie toont, maar door te testen weet je of je product aan de achterkant voldoet.

  2. Je productieproces betrouwbaar blijft.

    Als je weet wat je proces ingaat, voorkom je eerder fouten. Zo beperk je de scrap-rate. Met (meestal kleine) aanpassingen aan je machines (of aan de batches zelf), blijft je productie optimaal.

Testen is dus een mooie stap om je processen te professionaliseren. Ook als je nog twijfelt over het overstappen naar (deels) recyclaat: testen geeft zekerheid.

 

“Zorg dat je weet wat je in handen hebt, voordat het je machines raakt.”

aldus Peter van Barneveld, Business Developer

 

Wat wil je testen?

Dan wil je weten waar je op gaat testen. En wat moet je in ieder geval testen om zeker te zijn dat de ingaande kunststofstroom van de juiste kwaliteit is? Bij Polymer Science Park kennen we meer dan 20 verschillende testen. Maar volgens ons zijn dit de vier die je sowieso wil doen om een robuust kwaliteitssysteem op te zetten:

  1. FTIR en DSC
    Met FTIR spoor je verschillende polymeren en onzuiverheden in het recyclaat op, op basis van hun unieke infraroodspectra. Met DSC kun je verschillende polymeren in het recyclaat identificeren, door naar het specifieke smeltgedrag te kijken. Met een of beide testen, weet je zeker of en in welke mate je recyclaat zuiver is.
  2. Ver-assing
    Hiermee bepaal je de hoeveelheid anorganische vervuiling zoals glas, metaal en zand. Zo kan door de aanwezigheid van zand je product sneller breken of de verwerkingsmachine slijten.
  3. Melt Flow Index (MFI)
    MFI meet de vloeibaarheid van je materiaal. Soms is het nodig om de machines net even anders in te stellen voor een goedgevuld product.
  4. Treksterkte en impact test
    Hiermee test je mechanische eigenschappen zoals de treksterkte, stijfheid, rekbaarheid, slagvastheid en taaiheid. Als je de eigenschappen van de batch weet, weet je beter of je product voldoet aan de eisen. Is het sterk, stijf of flexibel genoeg?

 

Wanneer testen?

Dat bepaal je zelf, afhankelijk van je type product en hoeveel je produceert. Vaak zien we dat bedrijven alleen de allereerste batch laten testen, om vervolgens jarenlang op volle toeren te produceren. Terwijl de batches variatie kunnen vertonen en dus ook de samenstelling ervan. Door een aantal tests in te bedden in je productieproces, voorkom je verrassingen. Je kunt bijvoorbeeld standaard tests doen:

  • bij elke batch (of meerdere tegelijk). Bijvoorbeeld MFI;
  • als je wisselt van leverancier;
  • op aantal: steekproefsgewijs bij bijvoorbeeld elke 5e of 10e batch;
  • op tijd: steekproefsgewijs elke 3e week van de maand of bij de start van de week.

Natuurlijk hangt dat ook af van hóe je je kwaliteitssysteem inregelt. Daarmee komen we op het volgende punt.

 

Hoe borg je dat in je kwaliteitssysteem?

Er zijn in de basis twee manieren om je eigen systeem op te zetten:

  1. Door zelf machines aan te schaffen.
    Eerlijk is eerlijk: dat is vooral voor grote bedrijven haalbaar. Zij schaffen de machines aan en leiden de mensen op. Daarvoor zijn middelen én de kennis nodig. Daarom ‘lenen’ we onze specialisten regelmatig uit om mee te denken over de opzet en het trainen van de collega’s. Zo kan het bedrijf daarna zelf de batches testen, de effecten op het product meten en de machines afstellen waar nodig.
  2. Door het testen uit te besteden.

Dat hoeft niet ingewikkeld te zijn. Je stuurt een (of een aantal) batches op en binnen korte tijd is duidelijk of deze voldoen aan jouw kwaliteitseisen. Zo zijn wij al onderdeel van de vaste workflow van een groot aantal bedrijven. Het voordeel is dat we, omdat we veel materiaalstromen kennen, de data breder kunnen interpreteren. Zo kunnen we een bredere analyse doen. Blijkt bijvoorbeeld de treksterkte te laag? Dan kunnen we ook helpen een antwoord te vinden.

 

Daarnaast is het van cruciaal belang dat de data wordt verzameld en geanalyseerd, zodat je een trendanalyse kan maken. Zo kun je terugkijken in de tijd in het geval van een kwaliteitsissue en kan je verbanden proberen te leggen.

 

Je eigen kwaliteitssysteem. Wat zijn de voordelen?

Door te testen (of te láten testen) heb je een groot voordeel. Namelijk: dat je je eigen database en trendanalyse opzet  Dat is handig omdat:

 

  • … het je meer keuzemogelijkheden geeft.
    Je weet precies wat jouw product en proces nodig heeft en welke samenstelling een recyclaat mag hebben. Zo kun je breder kijken dan 1 leverancier.
  • … het voor zekerheid zorgt.
    Natuurlijk, je kunt afgaan op de technische specs van de leverancier van het recyclaat. Maar niet elke leverancier meet hetzelfde of werkt met dezelfde toleranties van vervuiling.
  • …het je onafhankelijk maakt.
    Met name als je het uitbesteedt. Jouw testresultaten zijn onafhankelijk ingewonnen. Mocht een klant of leverancier een kwaliteit-gerelateerde vraag hebben, dan is daar geen twijfel over mogelijk.
  • … het je zekerheid geeft, mocht je nog twijfelen over recyclaat.
    Als je overweegt om te schakelen naar duurzamer kunststof, maar je twijfelt over de kwaliteit. Meten is weten, en zo borg je de kwaliteit aan de voorkant.

 

Gedreven testexperts

Het mag duidelijk zijn dat we enthousiast zijn over testen! Want door een eenvoudige toevoeging van tests, kun je een grote slag slaan in de kwaliteit van je producten én processen. Ook – of misschien wel júist – als je werkt met recyclaat!

 

Ook je kwaliteitscontrole (verder) professionaliseren?

We denken graag mee, neem daarvoor vrijblijvend contact op.

Iedereen heeft wel eens geprobeerd iets aan elkaar te lijmen, soms met succes maar ook vaak niet. Ooit afgevraagd waarom?

In deze lezing door dr. ir. Wim Zoetelief, Covestro TAP-NL komen de verschillende aspecten van een lijmverbinding aan de orde. Hoe maak je een goede lijm? Polymeerfysica, met name reologie, vormt de verbindende factor bij het begrijpen van de rol van polymeren in het tot stand komen van een goede hechting. Wellicht helpt deze achtergrondkennis bij de volgende lijmklus!

 

Dr. ir. Wim Zoetelief

chemische kring

Sinds zijn afstuderen bij de faculteit Werktuigbouwkunde aan de Universiteit Twente is Wim Zoetelief werkzaam op het gebied van polymeerverwerking en reologie. Na het afronden van zijn promotie onderzoek aan de TU Eindhoven heeft hij enkele jaren gewerkt bij het Philips Nat. Lab. Voordat hij als reoloog bij DSM Research aan de slag ging. Door de jaren heen lag altijd de focus op de rol van het materiaal, meestal gesmolten polymeer, in vormgevingsprocessen en hoe dat de eigenschappen beïnvloedt van het uiteindelijke product. De laatste jaren bij DSM voor de overgang naar Covestro stond in het teken van toepassing van deze kennis in het gebied van 3D-printen. Sinds kort vormt reologie van dispersies de nieuwe uitdaging.

 

Nadere informatie over de lezingen kunt u aanvragen via het CKZ emailadres: ckzsecretariaat@gmail.com.

Op 12 maart 2024 kwam de kunststofindustrie samen in Almelo voor het Kunststof Seminar Circulaire Transitie: De Potentie van Biobased Kunststoffen. De bezoekers werden geïnformeerd over biobased kunststoffen en de vele toepassingsmogelijkheden daarvan. Toonaangevende sprekers vertelden over hoe zij de stap naar Biobased kunststoffen hebben gemaakt. Hier lees je een beknopte terugblik van wat er deze middag allemaal aan bod kwam.

Gerrit Hiemstra

 

Onze bezoekers werden ontvangen met een heerlijke lunch om de middag goed te starten en te netwerken. Het plenaire programma ging van start met Gerrit Hiemstra, medeoprichter van Oarshûs biobased bouwen. Als voormalig meteoroloog startte hij met het benadrukken van de noodzaak voor verandering. Klimaatverandering vraagt om een verandering als persoon en als industrie. Een van de oplossing is door gebruik te maken van biobased oplossingen. Er werden zelfs concrete project ideeën naar voren gebracht als kansen in de bouw.

“Er liggen concrete kansen in de bouw voor biobased materialen.”

Aldus Gerrit Hiemstra | Oarshûs

Na deze mooie eyeopener, gaf Erwin Zant van Polymer Science Park een introductie over biopolymeren die goed werd ontvangen door het publiek. Een mooie start om de deelsessies in te gaan en te focussen op de mogelijkheden en uitdagingen van biopolymeren.

 

 

Biopolymeren, hoe nu verder?

Biopolymeren willen toepassen is mooi, maar kan impact hebben op je welke technieken komen erbij kijken en voor welke toepassingen is het geschikt? Kortom, hoe kun jij het toepassen in jouw producten?

Een van de sprekers in de deelsessies was Braskem. Zij bieden mogelijkheden met hun bio-PE, waarna hun distributeur FKUR een vertaling heeft gemaakt naar de toepasbaarheid van biopolymeren. Milad Goldkaram van TNO vertelde welke ontwikkelingen er zijn op het gebied van AI om (snel) nieuwe biopolymeren of product eigenschappen te ontwikkelen. Maar wat zijn de drijfveren achter het gebruik van biopolymeren? Daar ging Remy Jongboom van Senbis op in.

Parallel aan de sprekers hierboven, was er nog een inspirerende deelsessie met Rodenburg Bioplastics die een duurzamer alternatief biedt voor olie gebaseerde kunststoffen door gebruik te maken van aardappelzetmeel.

 

“Misschien is het nog niet mogelijk om alle materialen te vervangen met een duurzamer alternatief, maar met kleine aanpassingen heb je ook al een positieve impact.”

Rick Hagenaars | Rodenburg Bioplastics

PHA is ook een natuurlijke vervanger voor olie gebaseerde kunststof, en dat is wat Paques Biomaterials produceert. PHA is over het algemeen erg goed biologisch af te breken en toepasbaar in veel end-to-end mogelijkheden. Helian Polymers is compoundeur van PHA’s en heeft de afgelopen 2 jaar geleerd dat er een aantal kritische (succes) factoren zijn zoals de verwerking, functionaliteit en prijs. Dit heeft geleid tot het ontwikkelen en testen van meerdere formuleringen voor PHA met als doelmarkten verpakkingen, persoonlijke verzorging, agricultuur, horticultuur en 3D-printen.

Dat gedegen onderzoek kan leiden tot de ontwikkeling van nieuwe monomeren bewijst Gert-Jan Gruter van Avantium. Zij ontwikkelden PEF uit volledig hernieuwbare bronnen. Met zo min mogelijk energiegebruik en geen massaverlies. 1 kilo biologisch materiaal moet ook weer 1 kilo monomeer opleveren. De door hen ontwikkelde PEF is het duurzame alternatief voor PET met betere barrière-eigenschappen.

 

 

Hoe ga jij biopolymeren toepassen?

Met alle kennis die tijdens het seminar opgedaan is, kunnen de aanwezigen gelijk aan de slag met biopolymeren. Daarbij is de vraag, hoe ga jij biopolymeren toepassen? Polymer Science Park helpt jouw bedrijf graag bij het testen en ontwikkelen van jouw duurzame product. Neem vrijblijvend contact met ons op en ontdek de mogelijkheden.

Zet ook alvast het volgende Kunststof Seminar op 14 november 2024 in jouw agenda.

 

 

Heb je een vraag?

Bel ons op 085 483 7800 of maak gebruik van het onderstaande contactformulier.