Deze site maakt gebruik van cookies, zodat wij je de best mogelijke gebruikerservaring kunnen bieden. Cookie-informatie wordt opgeslagen in je browser en voert functies uit zoals het herkennen wanneer je terugkeert naar onze site en helpt ons team om te begrijpen welke delen van de site je het meest interessant en nuttig vindt.
Stoffen die Moeder Natuur tot Kunst heeft verheven
Al miljarden jaren lang heeft Moeder Natuur een fascinerend palet aan biopolymeren gecreëerd, waarvan sommige ware kunstwerken zijn. In deze blog gaan we dieper in op de wereld van biopolymeren en ontdekken we de diversiteit, functies en toepassingen van deze natuurlijke chemische verbindingen.
Lignocellulose: Bouwsteen van de Natuurlijke Wereld
Het ligt voor de hand om te beginnen met het meest voorkomende polymeer op aarde dat ongeveer 50% van de totale biomassa uitmaakt: lignocellulose. Op afbeelding 1, hier rechts te vinden, is een veronderstelde structuur van lignine in naaldbomenhout te zien. Deze stof in bomen en planten, waaronder gras, wordt steeds meer als grondstof ontdekt. In Groningen werd in 2021 de eerste asfaltweg ter wereld in gebruik genomen, waarin bitumen door lignine werd vervangen. Een voorbeeld dat Rijkswaterstaat verder gaat uitbreiden in het ‘Circuroad’ programma.
Chitine: Het Opkomende Alternatief voor PFAS
Chitine is de volgende in de lijst van meest voorkomende biopolymeer op aarde. Het is in vrijwel alle insecten, schaaldieren maar ook in schimmels (paddenstoelen) te vinden. Chitosan, verkregen door het verwerken van chitine, wordt momenteel ontwikkeld als alternatief voor perfluorverbindingen, zoals PFAS. Derivaten van chitosan zijn water- en olieafstotend te maken.
De diversiteit van biopolymeren komt tot uiting in hun structuur, waarbij zowel homogene als heterogene, lineaire als vertakte configuraties en co-polymerisaties mogelijk zijn. Homogene biopolymeren hebben een uniforme samenstelling en structuur, en alle sub eenheden (monomeren) in het polymeer zijn identiek. Een voorbeeld is desoxyribonucleïnezuur (DNA). Daarentegen hebben heterogene biopolymeren een niet-uniforme samenstelling en structuur, en bestaan uit verschillende soorten monomeren, zoals eiwitten die uit verschillende aminozuren zijn samengesteld. Alhoewel hierop ook weer uitzonderingen zijn, zoals de co-polymeren van gelatine die uit repeterende tripletten van (glycine-X-Y)n bestaan, waarin X en Y meestal proline en hydroxyproline zijn. De afbeelding hieronder toont links DNA met repeterend eenheden van cytidine, desoxyadenosine, desoxyguanosine en thymidine, in het midden collageen als voorbeeld van een gecopolymeriseerd, relatief homogeen eiwit waaruit gelatine kan worden gewonnen en rechts een complex heterogeen eiwit.
Bioactieve Biopolymeren: Natuurlijke Kunstenaars van Functionaliteit
De genoemde biopolymeren geven structuur, stevigheid, bescherming (cellulose, chitine) en energie (zetmeel, glycogeen), maar veel biopolymeren vallen op omdat ze bioactief zijn. Functionele activiteit (zoals regulatie, terugkoppeling, activatie van een cascade) lijkt vooralsnog een eigenschap die meestal bij de door de mens ontworpen polymeren ontbreekt. De natuur kan ons daarbij helpen en inspireren en dat gebeurt in toenemende mate. Een fascinerend voorbeeld, althans voor degene met een bio-organische achtergrond, zijn de ketens van N-acetylsiaalzuur. Te eenvoudig gesteld, maar ze bepalen in hoge mate de groei en aanpassingsvermogen van ons brein. Helaas maken enkele neuro invasieve bacteriën die bijvoorbeeld gevreesde hersenvliesontstekingen veroorzaken, hier misbruik van.
Het antistollingseffect van de heparine is een andere type activiteit van een biopolymeer. De stof wordt in de lever aangemaakt. Professor Stan van Boeckel (verbonden aan het toenmalig Organon) en zijn medewerkers wisten met behulp van computertechnieken (eind jaren 80!) de activiteit van heparine terug te brengen tot een molecuul bestaande uit vijf eenheden met enkele essentiële sulfaatgroepen op stereo chemisch belangrijke posities. Dit baanbrekend onderzoek leidde tot sterk verbeterde antistollingstherapie met organisch synthetische heparine imitaties.
Eiwitten: Kampioenen van Actieve Biopolymeren
Aan heparine valt op dat biopolymeren ook een lading kunnen hebben. Heparine en derivaten zijn anionen, maar positief geladen biopolymeren komen ook voor, waarbij stikstof in bijvoorbeeld amine- of guanidiniumgroepen in eiwitten, een belangrijke rol speelt. De functionele groepen in biopolymeren zijn dus divers; behalve sulfaat-, amine-en-guanidiniumgroepen, komen ook veel carbonzuren, fosfaat, methyl, acetyl, glycoloyl groepen voor.
Vanwege hun enorme variëteit en functionaliteit, zijn eiwitten de kampioenen onder de actieve biopolymeren. Moeder Natuur maakt dus niet alleen gebruik van monosachariden en fenolen als bouwstenen voor polymeren, ze doet dat ook met aminozuren en lipiden. Zijde is een intrigerend eiwitcomplex en een grote inspiratiebron voor innovatieve, technologische toepassingen in additieven, films, aero- en hydrogelen, schuim voor medische toepassingen, Nano materialen enzovoorts. Zijde bestaat uit twee eiwitten die in verschillende verhoudingen het product hard of zacht maakt. Dat lijkt op klassieke polymeerchemie, maar dan zonder de vervelende weekmakers.
Biopolymeren en chemie
We passen biopolymeren soms met een chemische bewerking aan. Voor mij is leer het meest tot de fantasie sprekende voorbeeld. Al in oude tijden, vanaf circa 9.000 jaren geleden, werden huiden tot leer verwerkt. Voor dit proces werden tannines uit onder andere eikenbast (tannum = eikenbast) ingezet. De negatief geladen tannines hechten via ionbindingen, hydrofobe interacties en waterstofbruggen aan eiwitten. Wijndrinkers kennen het effect van het verschijnsel: tannines in de wijn reageren met mondeiwitten en geven wrange smaak aan de wijn. Hoewel eetbaar, laten we eikels waarschijnlijk om die reden voor de eekhoorns liggen. Vanaf het jaar 1800 werden in toenemende mate chroom- en arseenzouten en formaldehyde (uit rook) voor leerbewerking ingezet. Het komt er in deze processen op neer dat de eiwitten in de huid samenklonteren (verknopen) en complexen vormen.
Fascinerend is hoe de natuur totaal verschillende oligomeren en polymeren combineert. Het zijn koolhydraatketens die covalent aan eiwitten (de zogenaamde glycoproteïnen) gebonden zijn, die bijvoorbeeld meebepalen hoe actief en hoe oud het eiwit mag worden. Parasieten en virussen maken er gebruik van om ons immuunsysteem te misleiden. Dr. Aldert Bergwerff, auteur van deze blog, heeft een aanzienlijke bijdrage geleverd aan de opheldering van de polymeren die de parasiet Schistosoma mansoni (getoond op de afbeelding hiernaast) gebruikt om ons immuunsysteem om de tuin te leiden. De parasiet is de veroorzaker van bilharzia en na malaria de meest voorkomende infectie op aarde.
Voor veel polymeerchemici zal het vanzelfsprekend zijn dat polymeren niet in een waterig milieu oplossen. Uit deze blog volgt dat veel biopolymeren juist in waterige oplossing voorkomen. Het mag als bekend worden verondersteld dat daar ladingen (ionbindingen), hydrofiele en hydrofobe eigenschappen, Van der Waals krachten, cross-linking (disulfide bruggen) et cetera aan bijdragen. Daarbij helpt een watermantel (kristalwater) dat een biopolymeer omhult waarbij de hydroxylgroepen van monosachariden (denk aan de glycoproteïnen) een grote rol spelen. Monosachariden zijn immers polyalcoholen en trekken water aan. Ook een slimme vouwing waarbij ontvouwing voor activatie van allerlei functies mogelijk is, verhoogt de oplosbaarheid van grote moleculen. De absolute winnaar op dit gebied is dubbelstrengs DNA. Op de afbeelding hieronder zie je DNA-strengen die aan een stukje hout of een glazen staaf blijven kleven. Menselijk DNA is opgelost en heeft een DP van 3 miljard (baseparen), een lengte van 2 meter (6 miljard nucleotiden x 0,34 nm) en een moleculaire massa van 2×1012 Da. Welk (xenobiotisch) polymeer doet dit na?
Biopolymeren, de spiegel voor polymeerchemici
Kortom, biopolymeren zijn fascinerend en kunnen een spiegel voor polymeerchemici zijn. Ze zijn divers en bestaan uit een breed spectrum aan structuren en hebben vele eigenschappen. Ze zijn in hoge mate biocompatibel. Ze worden dus makkelijk verdragen door levende organismen. Ze zijn hernieuwbaar door ze te produceren uit lignine, cellulose, zetmeel, chitine, eiwitten, vetten et cetera. Ze hebben een grote verscheidenheid aan makkelijk aanpasbare functionaliteit, zoals flexibiliteit, sterkte, elasticiteit, oplosbaarheid, en thermische en chemische stabiliteit. Niet onbelangrijk, misschien wel de belangrijkste kwaliteit van biopolymeren in de huidige tijd: ze zijn eenvoudig afbreekbaar. Welke chemicus gaat dit met zijn/haar ontworpen polymeren volgen?
Deze blog is tot stand gekomen in samenwerking met de Chemische Kring Zwolle en geschreven door dr. Aldert Bergwerff.
De Potentie van Biobased Polymeren
op 12 maart 2024 vindt het Kunststof Seminar: Circulaire Transitie plaats in Almelo. Het thema van dit seminar is ‘De Potentie van Biobased Polymeren’. Interessante sprekers uit de markt nemen je mee om de businesscase kloppend te maken, of vertellen je meer over de techniek en toepassingen van biopolymeren.
Wil jij gaan werken met biopolymeren of werk je er al mee en wil je samen met andere partijen een businesscase opzetten, kom dan zeker op 12 maart naar Almelo. De plaatsen voor het Kunststof Seminar zijn beperkt, dus koop jouw ticket dus snel op deze pagina.